

Context

- Wetlands (mostly peatlands) cover up to 50% of the landscape within the Western Boreal Plain
- -Play an important ecological and hydrological role
- Regional sub-humid (dry) climate
- Variable but typically low catchment runoff and efficiencies

The Athabasca River Basin

- Drains vast areas of Canada's Boreal Plain
- Volumetric flow increases, yet less productive (per-area basis) in the mid-to-low reaches
- Understanding processes controlling water movement that ultimately contributes to streamflow is very important

<u>Central Research Goal:</u> Understand freshwater generation in headwater systems and the importance for down-gradient ecosystems and regional rivers

-Dependent on nature of rainfall

Read about the innovative deployment of a 'Low Power Wide Area Sensor Network' at SMHCO here:

The importance of headwater catchments for water availability in the lower Athabasca River Basin, Canada

Scott Ketcheson and Jennifer Attema

Athabasca River Basin Research Institute, Faculty of Science and Technology, Athabasca University, Alberta, Canada

□ YMM Normals YMM 2018 **SMHCO 2018** YMM 2019 **SMHCO 2019**

Stony Mountain Headwater Catchment Observatory SMHCO consists of 6 headwater (0.5–9 km²) and 3 meso-scale (125–200 km²) catchments on the Stony Mountain Boreal upland landform in Alberta, Canada. Each headwater catchment has a central wetland flanked by forested uplands.

Site Name	Drainage Area (km²)	Elevation Range (masl)	Elevation Change (m)	Wetland Cover (%)	Downstream Catchment
Headwater Catchments					
Poor Fen	0.42	739 - 768	29	12.4	Milton's Creek
Moderate Fen #1	2.83	724 - 766	42	48.9	Channel Fen Inlet
Channel Fen Inlet	7.26	719 - 760	41	48.9	Channel Fen Outlet
Channel Fen Outlet	8.88	713 - 765	52	40.6	Hangingstone River
Moderate Fen #2	3.68	699 - 744	45	47.2	Hangingstone River
Extreme Rich Fen Inlet	5.99	671 - 690	19	61.6	Extreme Rich Fen Outlet
Extreme Rich Fen Outlet	6.41	650 - 671	21	67.0	Horse Creek
Regional Catchments					
North Star	122.12	650 - 725	75	68.5	Horse Creek
Horse Creek	167.31	555 – 705	150	59.7	Athabasca River
Hangingstone	197.41	495 – 770	275	42.2	Clearwater River

sketcheson@athabascau.ca; @SJ Ketche

POUR L'INNOVATION

KEY MESSAGE: Headwater catchments have higher runoff efficiencies & are important regions for water supply